Exam Seat No:_____ C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Numerical Methods

:	Subject	Code: 4SC04NUN	M1	Branch: B.Sc. (Physics)					
;	Semeste	r: 4 Date	e: 29/10/2018	Time : 10:30 To 01	:30 Marks : 70)			
	(2)] (3)]	Use of Programma Instructions writter	n on main answer bo ns and figures (if neo	y other electronic instrum bok are strictly to be obey cessary) at right places.	-				
Q-1	 Attempt the following questions: a) Find the value of ∫₀¹ e^x dx with h = 1/2 by Trapezoidal rule. b) Give value of a & b such that root of f(x) = 0 lies between a & b,where f(x) = x² + x - 5. c) Give general formula for Modified Euler Method. d) The method has a fast rate of convergence. (a) Bisection method (b) False position method (c) Newton Raphson method (d) none of these 								
	e) f)		ge-Kutta methods, th	Runge-Kutta method of _ (c) 4 th he Runge-Kutta method o (c) 4 th		(01) (01)			
Atte	g) h) i) j) k) mpt an	Write Picard's for What is the value Write Simpson's Write n^{th} approx Give value of f'	e of $f'(x)$ in generations one third rule. some third of iteration	y) with $f(x_0) = y_0$. I by Stirling inter polation method. forward interpolation form	n formula?	 (01) (01) (01) (01) (01) 			
Q-2 Q-3	a. b. c. a.	Find a root of <i>f</i> (decimal places. Find a root of the by using the New Attempt all que	e root of $2x = 3 + c$ $(x) = 3x - 6 - \log 2x - 6$ e equation $x^3 - 2x - 6$ vton-Raphson methostions	tos x by bisection method, $_{10} x$ using Iteration Method 5 = 0 correct up to three a od. I has second order conver	od up to four significant figures	(14) (05) (05) (04) (14) (05)			

	b.	Apply Taylor's series method to obtain approximate value of y at $x = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.									
O-4	c.	Find a root of the equation $\cos x - xe^x = 0$ correct up to three decimal places by using the False-position method. Attempt all questions									
ζ.	a.	Find a root of the equation $\cos x - xe^x = 0$ correct up to three decimal places by using the False-position method.									
	b.	Evaluate $\int_{0.1}^{0.7} e^x + 2x dx$ by Trapezoidal rule and taking n = 6.									
	c.	Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} dx$ by Simpson's 3/8 rule and taking n = 6. (04)									
Q-5											
	0	$\begin{bmatrix} r \\ x \end{bmatrix}$	3		<u>19 uata.</u> 5	11		27	34	(07)	
	a.	f(x)	-1		23	899		17315	25606		
Q-6	b.										
-	a.	Determine $y(0.1)$ and $y(0.2)$ correct to four decimal places from $\frac{dy}{dx} = 2x + y, y(0) = 1$. Use fourth order Runge-Kutta method. (0)									
0.7	b.	Using Euler modified method, obtain a solution of $\frac{dy}{dx} = x + \sqrt{x} , y(0) = 1$ for the range $0 \le x \le 0.6$ in steps of 0.2. Attempt all questions (14)									
Q-7		Find the value	-		nd <i>f"(</i> 0.5)	using Sti	rling's	formula f	rom the	(14) (07)	
	a.	following da	-		, ()					()	
				0.40	0.45	0.50	0.55	0.60	0.65		
		y 1.	521	1.506	1.488	1.467	1.444	4 1.418	3 1.389		
	b.	The table given below reveals the velocity v of a body during the time t (0) specified. Find its acceleration at $t = 1.1$									
		t	1.0		.1	1.2	1.	3	1.4		
0.0		v	43.1		7.7	52.1	50	5.4	60.8	<i></i>	
Q-8	a.									(14) (07)	
		dx dx dx dx dx dx dx								(07)	
		method given that $y(0) = 0$.									
		Apply Mile	o'a mati	had to f	nd the colu	ution of th	vo diffe	rontial ag	untion	(07)	

b. Apply Milne's method to find the solution of the differential equation (07) $\frac{dy}{dx} = x - y^2 \text{ in the range } 0 \le x \le 1.$